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A study of the one-dimensional lattice gas of positive and negative charges 
interacting via the logarithmic potential is continued. The two-particle 
distribution functions are evaluated exactly at the couplings F =  2 and 4. It is 
proved that the F =  4 isotherm exhibits an insulator-conductor phase transition 
at the reduced density 1/2, and the scaling behavior of the correlations near this 
critical point is given. Similarities of the conjectured phase diagram with that of 
a one-dimensional one-component log-gas in a periodic potential are noted. 

KEY WORDS: Insulator-conductor phase transition; two-component plasma; 
exact solution. 

1. I N T R O D U C T I O N  

In a previous paper, (1) to be referred to as I, exact calculations of the 
equilibrium statistical mechanics of a one-dimensional lattice gas of 
opposite charges interacting via a logarithmic potential were performed. 
For the isotherms F - - 2  and 4 [see (1.3) below for the definition of F] ,  the 
polynomial defining the grand partition function ~ was factorized for each 
value of M (the total number of lattice sites available to each charge 
species). The pressure and density were then obtained as functions of the 
fugacity in the thermodynamic limit. 

This particular log-gas system is of immediate physical interest for its 
relationship to the quantum Brownian motion problem in a periodic 
potential. (2) Explicitly, the grand partition function of the log-gas, in the 
low-density limit at least, is identical to the generating functional of the 
quantum problem. Furthermore, the mobility ~(~o) in the quantum 
problem is (up to a simple factor) equal to the dielectric constant ~(k) of 
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the log-gas (k is to be identified with co). The dielectric constant can be 
defined by 

1/e(k) = 1 - [CV(k)/q 2] [flq~(k)] (1.1) 

where Cr(k) denotes the Fourier transform of the truncated charge-charge 
distribution C(y), q denotes the unit of charge, and 3~(k) is the Fourier 
transform of the dimensionless potential. Explicitly, 

C(y)=2qa[P~,+(Y)-p~, (y)] (1.2) 

where pr +(y) denotes the truncated distribution function for like charges + ,  

and p r ( y )  the same for unlike charges. Also, 

fi~b(y) = - F l o g  lYl ,  F=q2/kBT (1.3) 

so that 

fi~(k ) = Fn/Ik[ (1.4) 

In the low-density regime, the log-gas consists of two phases(3'4): a 
high-temperature conducting phase in which e(k)~ oe as k ~ 0 ,  and a 
low-temperature dielectric phase in which e(k) --* 1 as k ~ 0 (it is possible 
to argue from electrostatics (5) that a one-dimensional region of two- 
dimensional dielectric material behaves as a vacuum). From (1.1) and (1.4) 
the conducting phase is thus characterized by the behavior 

Cr(k)/q 2~ Ikl/~F as k ~ O  (1.5) 

while for the dielectric phase 

CT(k) ~ o(Ikl) (1.6) 

The exact calculations performed in I revealed new features of the 
system worthy of study. First, I was led to conjecture a remarkable 
mathematical mechanism underlying the conducting-insulating phase 
transition: all the zeros of the grand partition function collapse on the 
point ~-= - 1  in the scaled complex fugacity plane ~. More explicitly, I con- 
jecture that all the zeros of ~ (for any fixed number M of lattice sites) lie 
on the negative real axis for F < 2, on the point ~ = - l  for F =  2, and on 
the unit circle in the complex ~ plane for F >  2. These claims were proved 
for all M at F = 2 and 4 and for all F with M = 2, 3, and 4. 

Furthermore, the exact calculations revealed a phase transition along 
the F =  4 isotherm at the reduced density zp+ = zp_ = 1/2 (every second 
lattice site is occupied), where z denotes the lattice spacing while p+ and 
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p denote the particle density of positive and negative charges, respec- 
tively. Mathematically, in accordance with the Yang-Lee (6) theory, this is a 
consequence of the zeros of the grand partition function pinching the real 
axis in the thermodynamic limit. I conjectured that this phase transition 
persists for all F >  2. 

In this paper I pursue exact calculations by evaluating the two-particle 
distribution functions at F = 2  and 4. In the latter case, this makes it 
possible to categorize the phase at F =  4 and zp + = 1/2 as conducting and 
explicitly calculate the behavior of the correlation length near the critical 
point. At F = 2  one again encounters the remarkable "conformal 
invariance" property of the truncated n-particle distribution function for 
like particles at nonzero separation from each other: they vanish 
identically. {7) 

2. DISTRIBUTION FUNCTIONS AT I '=2  

Let us first recall the precise definition of the system. Divide a line of 
length L into M intervals so that there are sites at the points 
n L / N , n = I ,  2,...,M. Introduce an interlacing lattice at the points 
(n - 1/2) L/M,  n = 1, 2,..., m. Denote these lattices Y, and Y2, respectively. 
Let the positive charges occupy 501 and denote the coordinates by m ~ L / M ,  
and let the negative charges occupy Lf2 with the coordinates given by 
(lk--1/2) L/M.  Further impose periodic boundary conditions so that the 
pair potential is 

V(01, 02) = - q i  q2 log{ le  2~riO'/L - -  e2=iO2/L I (L/2~z) } (2.1) 

2.1. n-Particle Distribution Function for Like Charges 

In the grand canonical ensemble, the dimensionless n-particle distri- 
bution for n charges of like sign (negative, say) at l '1-1/2, l~-1/2,..., 
l ' , -  1/2 is given by 

p.(_) I'~-5 ..... l ' . -  =-~rr ~2NZev(ll, Ii ..... l'.) (2.2) 
N = 0  

where 

Zx(/i,..., /;,): 
5// 

aa(/',) ... aa(/'~) 

M M N 

x ~, ~ H El+a(6)]  W~/(U!):l~=o(2.3) 
/ I , . . . , IN = 1 m l , . . . , m N =  1 j =  1 
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Here 3 r  denotes the grand partition function, ~ denotes the fugacity, WNr 
denotes the Boltzmann factor, and 6/6a(k) denotes functional differen- 
tiation. 

In ref. 1, I derived the result 

32 = (1 + ~)M (2.4) 

where 4, the scaled fugacity, is defined for general F by 

= (~M/L)r  (2 (2.5) 

Furthermore, previous work ~ gives the formula 

ZN(/' 1,..., l'n) -= ( U -  n) ' (~/L) 2N M u 

x F_, Y', '~,v~ a~,,'~ 
l n + l , . . . , l N =  1 0<~71,...,7 N 1 1 

x Det [e  - 2~i(t~- m)(~j-vk)/M]j,k = 1,...,u (2.6) 

The determinant in (2.6) vanishes if 7k = 7k' for k r k', so one can make the 
restriction 7k 4= ?~,. Also, the summand in (2.6) is symmetrical in 7n +1 .... 7N. 
Thus, one can write 

M - - 1  M - - 1  

E = ( N -  n)! E Z (2.7) 
0 ~ 7 1 , . - . , 7 N  0~<yl , . - . ,yn O ~ y n + l < T n + 2 <  . . .  < . y N ~ M  [ 

~ Y l  ,..-, Yn 

The sum over the rs in (2.6) can be performed row by row in the deter- 
minant [beginning with the (n + 1)th row], Due to (2.7), the only nonzero 
contribution is from the diagonal terms. After some straightforward 
manipulation of the resulting elements of the determinant we obtain 

Z~(I],..., l'~)= M 2 N - n  y, Det exp 
o~,...,~, L M nj, k=l ...... 

x ~ 1 (2.8) 
O-~<Yn+l'< "'" < y N < . M  1 

~Yl , . . . ,Yn  

The second sum in (2.8) is independent of the particular choice of ~,..., 7,, 
so one can choose 7 j = j - 1 ,  j =  1 ..... n. Now the sum over y~,..., ?~ can be 
performed column by column. Unless l~ = l~, for k = k' [in which case (2.8) 
vanishes], the only nonzero terms are the diagonals (each giving M), so 
one has the remarkable result that the function (2.3) is given by 

I '~)=~N( M - n  ) 1-I (1 -- 6,~,,/,) (2.9) ~NZN(I' 1 
'"" N - n  l<~j<k<~n 
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Substituting (2.9) in (2.2), one obtains 

p,(r,,..., r,)= [] (1 -~,,~) 
l ~ j < k ~ n  

= (rp_)" I ]  (1 -6 , j . , ; )  (2.10) 
l ~ j < k ~ n  

where z and p have been defined in the Introduction. In the thermo- 
dynamic limit, the result (2.10) has been obtained previously. (7) 

2.2. Distr ibut ion Function for  Opposite Charges 

In the grand canonical ensemble, the dimensionless distribution 
function for a positive charge at m a and a negative charge at l ~ -  1/2 is 
given by 

where 

~ -  ~2NZ N mo, la-- (2.11) 
~ F  N = O  

1~2 M M N W N  F 

=6a(ma) 6b(l~) ~ ~ l-~ [1 +a(mk)] [a  +b(/k)]  (N!) 2 a=b=O 
ll,...,lN= l ml,...,rnN= 1 k = 1 

(2.12) 

From the workings of I, one can readily show 

~ 2 U l N ( m a ,  l a - -  1/2) = ~ N [ ( N - -  1)!] 1 m - Z  

M~1 M~I ~' (kFI = ) X ~ k ,  Vk g2r;ima(Tp -- Vp)/M 

yl,...,yN=0 vp~O p=l 1 
k =/= p 

x Det [djk]j,k = 1,..,N (2.13) 

The elements of the determinant in (2.13) are 

I e  -- 2ni(la -- 1/2)(71 -- vk)/M j ~" 1, 

dJk = ,6~j, v~, j >~ 2, 
k = l , 2 , . . . , N  

(2.14) 
k = l ,  2,...,N 

Taking into account the Kronecker deltas in (2.13), the determinant 
vanishes if ~ = 7k. for k r k' (k, k'/> 1 ) or vl = 7k (k ~> 2), so one can make 
the restriction ~k r and v I r 7k. 
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By considering each term in the sum over p in (2.13) individually, we 
see that the p = 1 term gives a different contribution to the p 1> 2 cases. 
Separating the two types of terms and ordering the 7's gives 

{2NZ N(m,,  la - 1/2) 

= {  ~vM-2 2 2 1 
y 0 22=0  0 ~ 2 3 <  . - - < y N ~ M - - 1  

r 22 

M 1 M - - I  ") 

-I- 2 y" e2~i(,~o ,~+*/Z)(2~-~,//M ~ 1} (2.15) 
21=0  v l=O 0~<22< . . .  <2N~M--I  

7f=yl, v 1 

Using the same argument which led to (2.9), this reduces to 

~ 2 N Z N ( m a ,  l a - - ~ )  

M - 2  1 (M- 2"]~ (2.16) 
+ M 2 sin: rc(ma - la + 1/2) /M \ N -  1 ]J  

Substituting (2.16) and (2.4) in (2.11) then gives 

( ~)  z p ( 1 - r p )  (2.17) 
pr+, ma, la -- --= M 2 sin 2 Tc(m a -- l a q- 1/2) /M 

where p = p + = p_ is the particle density of either species. In particular, 
one has in the thermodynamic limit 

( ~) zp(1-~p) 
pr+ _ ma, l , _  _ r c Z ( m a _ l a +  l /2)  2 

which agrees with a result of Gaudin3 7) 

(2.18) 

3. TWO-PARTICLE  D ISTRIBUTION FUNCTIONS AT 1"=4 

In ref. 1, I showed that the Boltzmann factor for N positive and N 
negative charges at F-=-4 can be written 

N 

WN4 = 2-2N(27z/L) 4N ~ 1-I z~ 2k+'2k ~+~ 
7 k=l  

N 
•  l ~  Wk'e'2k-"--'Pl2k'--lfp(2k--l),P(2k) ( 3 . 1 )  

X k ~ l  
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where 

fe(2,-l),e(2k) = az(e(2k))(Te(2k))[al(7e(2k 1))-- 1]z(e(2* 1)) 1 

-- az(e(z,-1))(7p(2,- 1))[-al(Tp(2,)) -- 1 ] z(p(2*))- 1 

W k  ~ e2rCimk/M Z k  = f2rci(lk I /2 ) /M 

a , ( 7 ) = 7 + l - M / 2 ,  a : ( 7 ) = 7 2 + ( 1 - M ) 7 - M / 2  

1, k odd 
z(k)= 2, k even 

(3.2) 

7 denotes the summat ion range 

0 <~71, 72,'", 72N<~ M -  1, 7 2 j ~ 7 2 j  ' , 7 2 j - -  1 r 7 2 j ' - -  1 

and 

X =  {P: P(2I) > P(21- 1 ) each l = 1, 2,..., N} 

This expression was used to evaluate the grand canonical  part i t ion function 
~'~ 4 a s  

4[ I t ~ 4 -  ~ - 1-I 1 - 4 ~ - 7  4 1 2 - 4 1 ( M - 1 ) + - ~ - - 2 M +  1 +4; 
l=O 

1, (3.3) M even 
x 1 + 4, M o d d  

where 4 is given by (2.5) with F =  4. 

3.1. Like Charges  

It is most  convenient  in this case to calculate the two-particle 
distribution function for two positive charges, which are supposed fixed at 
m 1 and m e. Use the definition [-equivalent to (2.2)] 

p+.+(ml, rn2) = ~ -  ~2NZN(ml, m2) (3.4) 
~ 4  N = 2  

where 

M M 

ZN(ml,  m2) = ~ ~ WN4/[,N! ( N -  2)!]  (3.5) 
m3,...,mN= 1 ll,...,lN= ! 

822/54/1-2-5 
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Substituting (3.1) in (3.5) allows the sum over ll ..... lN and m3,... , m N to be 
performed. This gives 

N N 

( _ _ I ) N M 2 N  2 ~I  r ~ (~e(2j) q-P(2j 1) b l , M  ( 3 . 6 )  
k = l  j = 3  

To proceed further, it is necessary to list permissible choices [i.e., 
those consistent with the constraints given in (3.2)-1 of P(1) ..... P(4). The 
permissible choices can be divided into different classes. These classes can 
be categorized according to the leading-order ~ behavior in a low-density 
expansion, which is determined by the number of permutations directly 
affected by the particular choice of P(1) ..... P(4). There are three 
possibilities, 42 , 33 , or 44 , which correspond to directly affecting no other 
permutations; P(5), P(6); and P(5),..., P(8), respectively. To illustrate the 
reasoning necessary to evaluate the contribution to (3.5) for each class, 
I outline the working for the 42 class. 

The 43class specifies P(1),..., P(6), which I list in Table I, together 
with the corresponding value of e(P) and the multiplicity. 

Here sl < s2 < s3, and also to be included in each contribution are the 
interchanges (P(1), P(2))+--~ (P(3), P(4)). The column headed e(P) gives 
thevalue  of the permutation assuming P ( 2 1 - t ) = 2 r t - 1  and P(21)=2r t 
for all l~> 4. The multiplicity column gives the number of possible per- 
mutations of sl, s2, s3 which give the same contribution to (3.5). 

First, note that we could have specified any of (P (2 I -  1), P(2I)), l>~ 3, 
instead of (P(5), P(6)). But all such choices give the same contribution to 
(3.5), so we have a factor of 

N - 2  (3.7) 

Further, we can choose sj = j, j = 1, 2, 3, provided we multiply by 

I <~ SI <S2<S3 <~ N 

Table I. The ~j3 Class of Permutat ions for p+ .+  

P(1) P(2) P(3) P(4) P(5) P(6) ~(P) Multiplicity 

(i) 
(ii) 

(iii) 
(iv) 

2s1-1 2sl 2s2 2s3 2S2--1 2s3-1 -1 3 
2s1-1 2sl 2s2-1 2s3-1 2s2 2S 3 -1 3 
2 s ~ - I  2s 2 2s t 2s 3 2s2-1 2s3-1 +1 6 
2s1--1 2s2-1 2s a 2s3--1 2s~ 2s 3 + 1 6 
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From Table I, the value of the terms in (3.5) directly dependent on 
P(1),..., P(6), i.e., the value of 

1A~TP(2k - 1 ) - -  ) J P ( 2 k )  - -  I f  
" k  JP(2k-- t ) ,P(2k)  (~P(5)+P(6),M--1 

k 1 

3 

x I ]  6(72~,+~2s,-,, M -  1) (3.9) 
l=1 

can be computed. The procedure can be made more efficient by ignoring 
some terms which will not contribute in the thermodynamic limit. The 
value of (3.5) for each entry in Table I is then 

(i)&(ii) F1(72, ')/4)= -2A,(?2) A2(74 ) (3.10) 

where 

(iii) 

(iv) 

A 1('/) = a2(7) + [a l (~ ' ) ]  2 ( 3 . l l )  

A2(?) = 4 [ a d T ) ]  2 a2(~) (3.12) 

F2(72, 74) = 4 cos [27t(ml - m2)(~ 2 - -  74)/M] 

x aa(74)Ea2(74) + a1(~2) a1(74)] 

x [az(?4)al(y2)+az(72)a1(74)] (3.13) 

F3(72, ~4) = 4 cos[2~(ml  - m2)(72 - 74)/M] 

X a~(74 ) a2(Y4)[al(74 ) a1(72) 

+ a2(Y2)] [al(?2) + ax(?4)] (3.14) 

Taking note of the factors (3.7), (3.8), and the multiplicities listed in 
Table I, one finds that the contribution to (3.5) is thus 

~-- 6(2--2N) (--1)NM2N-2(N--2) 2 2 2 Fj(72, 74) 
~4 y2=o y4=O j=l 

0 ~< yS,Y10,...,Y2N ~< M - -  1 P(2k);>P(2k 1) 

~72.74.M- 1-74 (3.15) 

The problem of evaluating the contribution of (3.15) to (3.5) and (3.4) 
is now of a similar type to that encounted and solved (1) in the evaluation 
of 6 4. The techniques detailed in I allow us to evaluate the contribution of 
(3.15) to the distribution function (3.4) in the thermodynamic limit as 
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fo fo d 1-4~Bl( t )  6443 dt Sy(t;4) y(s;4 ) {Bl(t) B z ( s ) - 4 c o s [ 2 z t ( m 2 - m l ) ( t - s ) ]  

• {bl(s)[b2(s) + bl(t) bl(s)][bz(s) bl(t) + b2(t) bl(s)] 

+ bx(s) b2(s)[ba(s) bl(t) + bz(t)] [bl(t) + bl(S)] } } (3.16) 

The functions BI, B2, b l ,  and b 2 are continuous versions of AI,  A2, al, 
and a2, respectively, obtained by dividing through by M:,  M 4, M, and 
M 2, respectively, calling 7/M the variable t (or s, as appropriate) and 
ignoring terms O(1/M). Explicitly, 

b~(t) = t -  1/2, b2(t) = t ~ - t 
(3.17) 

B~(t)=bz(t)+ [-bl(t)] 2, Bz(t)=4[b~(t)]Zb2(t) 

Also 

y(t, ~)= E1 - 4r 2 -  1642B2(t) 

= 1 -84Bl ( t  )+  42 (3.18) 

The most crucial feature of the calculation outlined above is to list 
correctly all permutations in the class and the corresponding parities and 
multiplicities. For the 42 class these are given by Table II, while for the 
44 class I have listed the permutations in Table III. 

The entries in both tables are to include the interchange 
(P(1), P(2)) ~ (P(3), P(4)). 

Use of Tables II and III and the procedure outlined above to derive 
(3.16) allow us to derive the evaluation of the truncated distribution 
function 

pT (ml,rnz) +,+ 

= -1642 dt ds y(t; ~) y(s; 4) 

• cos 27z(ml - m2)(/-- S){ [b2(t) bl(s) + bz(s) bl(t)] [-bl(t ) + bl(S)] 

Table II. The ~2Class of Permutations for p+.+ 

P(1) P(2) P(3) P(4) e(P) Multiplicity 

2s2-1 2s2 2 s ~ - i  2sl + 1 1 
2si 2s2 2sl 1 2s2-1 - 1  1 
2s1--1 2sz 2st 2 s z - I  + 1 1 
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+ [b2(t) + b~(s) bl(t)] [b2(s) + b~(t) bl (S) ]  } 

- 256~3 f~ f~ dt dSylt.  4~Bl(t)~) y(s; ~) cos 2n(ml-m2)( t -  s) 

• {b,(s)[b2(s) +bl(t) bl(s)][b2(s) b~(t) + b2(t) b,(s)] 

+ bl(s) b2(s)[b~(s) b~(t) + b2(t)] [bl(t) + bl(s)] } 

_ 512~4 ~ ;2 dt dsC~ 27z(ml-mz)( t -  s) 
y(t; ~) y(s; ~) 

• {bl(t) bl(s)[b2(s) bl(t) + b2(t) b~(s)] 2 

+ bl(t) bl(s) b2(t) b2(s)[bl(t) + b1(s)] 2 

+ 2b,(t) bl(s) b2(s)[bl(s) b~(t) + b2(t)] e } (3.19) 

3.2. Opposite Charges 

Now we turn our attention to calculating 

p+_ ml, [1- =~4 ~ 2 N z  N m l ,  l, - (3.20) 
N = I  

where 

M M 

Zx(ml, l~- 1/2)= ~ ~ WN4/[(N- 1)!32 (3.21) 
m2,...,mN= i 12,...,IN= 1 

The sum over the l's and m's in (3.21) can be performed by substituting 
(3.i) in (3.21). They contribute 

N 
( - I ) N - I  M2N-2 l-I ~zt+y2, I+I,M(~P(2I)+P(2I--1)+I,M (3.22) 

I ~ 2  

Table Ill. The ~4 Class of Permutations for p§ 

I'(1) P(2) P(3) P(4) P(5) P(6) P(7) P(S) e(P) Multiplicity 

2sl 2s2 2s3 2s4 2s1-1 
2sl 2s2 2s3 2s 4 2s1-1 
2sa-1  2s2-1 2s3-1 2s4-1 2Sl 
2s1-1 2 s2 - I  2s3-1 2s4-1 2sl 
2sl 2s 2 2s3-1 2s4-1 2s1-1 
2sl 2s2-1 2s3 2s4-1 2s1-1 

2sz--1 2s3--1 2s4--1 +1 3 
2s3--1 2s2-1 2s4--1 --1 6 
2s2 2s3 2s 4 4-1 3 
2s 3 2s 2 2s 4 --1 6 
2s2--1 2s 3 2S 4 +1 6 
2s~- I  2s2 2s 4 - 1  12 
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Table IV. The ~j Class of  Permuta t ions  fo r  p+,_  

P( 1 ) P(2)  ~(P) Multiplici ty 

1 2 1 1 

The permissible values of P(1),..., P(4)  can be categorized into the classes 
3, 42, 43, and 44. These values are given in Tables IV-VII  (we take 

$3~$2~S1). 
Proceeding as in Section 3.1, we can use these tables to derive the 

result 

= - 4 ~ f ~ I o d t d s  
cos 27z(/+ 1/2 - m)(t - s) 

y(t; 3) y(s, 3) 

x [-1 - 4~Bl( t ) ]  [ 1 - 44Bl(S)] [b2(t ) + bl(s ) bl ( / ) ]  

-- 3242 f~ fo dt ds 
cos 21t(l + 1/2 -- m)(t -- s) 

y(t; 4) y(s; 3) 1-1 - -  4 ~ B 1 ( s ) ]  

• {b2(t) bl(t)[-b,(t) + bi(s)] + b,(t)l-b2(t) b,(s) + b2(s) bl(t)] } 

-25643 f2 fj dt ds 
cos 27z(I + 1/2 - m ) ( t - s )  

y(t; r y(s; 4) 

• b2(t) b,(t) b,(s)Eb2(s) + b,(t) bl(s)] (3.23) 

3.3. Simplified Expressions for the Truncated Distributions 

In ref. 1, I showed that  the zeros of 3 are unchanged by the mapping 

~ 1/3 (3.24) 

Table V. The ~2 Class of  Permuta t ions  for  p§  

P(1)  P(2)  P(3)  P(4)  s (P)  Multiplici ty 

1 2 s  - 1 2 2 s  - 1 1 

2 2s 1 2s -- 1 -- 1 1 
2 s -  1 2s 1 2 1 1 
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Table VI. The ~3 Class of Permutations for p+._ 

69 

P(1) P(2) P(3) P(4) P(5) P(6) e(P) Multiplicity 

2sl 2s2 2 s 1 - 1  2 s 2 - 1  1 2 - 1  2 
2s1-1 2sl 1 2 s 2 - 1  2 2s2 - 1  2 
2sl 2 s 2 - 1  1 2 s 1 - 1  2 2s 2 - 1  2 

This is a general property of a lattice gas in periodic boundary conditions, 
where 

= e-~e~ (3.25) 

Eo denoting the ground-state energy and ~ the fugacity. Suppose, further- 
more, that in the thermodynamic limit the zeros form a one-dimensional 
region along the contour C in the complex plane with normalized density 
f(w). Then the dimensionless particle density can be written 

fc -~(w+w 1)+2~ zp= dwf(w) 1 - ~ ( w + w - 1 ) + r  2 (3.26) 

where ~ is the lattice spacing. It follows immediately from (3.26) that under 
the transformation (3.24) the particle density transforms as 

rp ~ 1 - rp (3.27) 

How do the truncated distribution functions transform under (3.24)? 
Cornu and Jancovici (8) have addressed this question for the truncated 
distribution functions obtained by Gaudin (7) for the two-dimensional 
generalization at the lattice gas considered here at F =  2. They found that 
the truncated distributions were invariant under the transformation (3.24). 

In the case of the distribution function between like charges this 
assumes that the particles are separated from each other. When two 
particles occupy the same position the distribution function vanishes and 
we have 

pr+,+(0) = - ( r p )  2 (3.28) 

Table VII. The ~4 Class of Permutations for p+._  

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) ~(P) Multiplicity 

2Sl 2s2 281 - 1 2s 2 - 1 1 2s 3 - 1 2 2s3 1 6 
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Hence, under the transformation (3.24), since the density transforms as 
(3.27) and the distribution function still vanishes, 

- ( 1  -  p)2 (3.29) 

An investigation of the transformation properties of the results (3.19) 
and (3.23) leads to substantially simplified expressions. Expanding the 
numerators in (3.19) and (3.23), collecting together terms with the same 
leading-order low-density behavior, and using (3.17) and (3.18) shows 

and 

fj f] bi(t) b2(t) bl(s) e 2=i(m~-m~)l'-*l 
r +(ml,m2) = _6442 dtds 

P +" y(t; ~) y(s; ~) 

- fo dt [4~Bl(t)--  ~2] e2~i(ml--m2)t 2 
y(t; ~) (3.30) 

(1) 
fO fO b2(t )~-bl(s)bl( ' )  = - 4 ( ~ + ~ 3 )  dtds y(t;~)y(s;~) 

fo fo bl(s)-b2(t)e2~i('+l/Z m)('-s) (3.31) +842 dt ds bl~t()t; ()y(s; ~) 

where bl,  b2, B1, and y are defined by (3.17) and (3.18). 

e2rci(l + 1 / 2  - rn)(l - s) 

The first term of the expression (3.30) is clearly invariant under (3.24), 
while some algebraic manipulation shows that the second term is, too, 
provided ml r  If ml =m2,  then this second term gives the properties 
(3.28) and (3.29). The truncated distribution function between unlike 
charges is invariant under the transformation (3.24), as can be seen 
immediately from (3.31). 

4. S U M  RULES 

4.1. Compressibi l i ty  Sum Rule 

A good check on the accuracy of our working is the verification of 
some sum rules of general validity involving the two-particle distributions. 
One such identity is the compressibility sum rule, which here states 

o~ &p + 
pr + (Iml )= ~ - - - ' r p  + (4.1) 
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where 

r T (ml, m2 ) m = m l - - m 2  P+,+(Iml)=--P+,+ (4.2) 

To verify (4.1), substitute (3.30) in the left-hand side. Interchanging 
the order of summation and integration then gives 

-16r Io dt B:(t) fo [4~Bl(t)-- ~212 
[y(t;  ~)]2 dt [-y(t; 4)] 2 (4.3) 

Since 

f]  - 4~Bt ( t )  + 4: (4.4) :p + = dt y(t; ~) 

and 

1 
B2(t) = - ]-~ + [Bl( t ) ]  2 (4.5) 

we can readily identify (4.3) with the right-hand side of (4.1) as required. 
From (4.4) and (3.18) the right-hand side of (4.1) diverges when ~ = 1 

(the transition point). I shall show in Section 4.3 that the left-hand side 
diverges also. The compressibility is infinite at the transition point. 

4.2. P e r f e c t  Screen ing  Sum Rule 

This sum rule, which is thought to be equivalent to the existence of the 
thermodynamic limit, states that the amount of charge contained within 
the screening cloud of any charge in the system is equal and opposite to 
that of the charge. Thus 

p (r / f ) T  ~ p r  ( i m l ) = _ : p  (4.6) _ + _  t ' + 1 2  + + , +  + 

l ' =  - - o o  m =  oo  

where I have written 

r , r _ ( l +  1/2, m), l' l - m  (4.7) p+,_(J l  + 1/2J)=p+,  = 

The sum rule can be checked by using the expressions (3.30) and 
(3.31) and interchanging the order of summation and integration. The 
resulting expression is to be compared to the right-hand side of (4.6) with 
(4.4) modified so that the denominator is [y(t;  ~)]:. As expected, the sum 
rule is valid. 
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4.3. Asymptotic Behavior of the Truncated Distributions 

I have previously noted (9) that for the log-potential lattice gas a sum 
rule can be derived to specify the state of the system as conducting or 
insultating. I briefly review the argument here. 

A conducting state is characterized by its ability to screen an external 
charge density 6Pext  = ,~e ikx in the long-wavelength, k -+ 0, limit. In the log- 
potential lattice gas this means that the change in charge density on 
neighboring lattice sites (one available to positive charges, the other to 
negative charges) will exactly compensate the amount of charge within a 
region of length r (the lattice spacing) in the external charge density. 

A linear response argument shows that this characterization leads to 
the sum rule 

oo 
2 e ikmz-T ( ) e ik(m+l/2)':nT ( I m +  1/21)]  [-P+{Sm,Oq'- D+,+ Iml - , - + _  

m= co 

~ ~ Ikl/(=/') (4.8) 

Use of the Poisson summation formula and the theory of Fourier 
transforms ~1~ shows that this is equivalent to the large-Lml behavior 

Cf(m)/q2=-2[pr+,+(]ml)-pr+ _( m l ) ] ~  -1/re2/" Irnl 2 (4.9) 

T ( T [In ref. 9, I erroneously wrote p + _  Iml) as p+_(Im-1/21). The correct 
form (4.9) is necessary whenever r p + _  decays slower than 1/m2.] The 
large-lml expansion of pr+,_(lm I ) is to be interpreted as the large-/' expan- 
sion of p~ _ ( ] / ' +  1/21) with l ' +  1/2 replaced by m in the final expression. 

It is a straightforward exercise in integration by parts to deduce from 
(3.30) and (3.31) the large-separation expansions 

pr+ +( m ) 

1 / / 1 0 2 4  3072 3200 1280 128 
(2 r~m)4 \ (1 -{ )  6 ( 1 - { )  s+ ( 1 - { )  4 ( 1 - { )  ~ q  (1 - - - -~J  

-t- O ( m - 6 ) ,  ~ # 1 (4.10) 

P+,_ + 

1 / / 1 0 2 4  3072 3456 1792 
[2~(l '  + 1/2)] 4 \ (1  - -  r (1 - -  4)  5 + (1 - -  ~)~ (1 - -  ~)3 

400 16) ( , , _6 )  
+ ( 1 - ~ )  - - - - ~  1 - -  + o  t + $  , r  (4.11) 
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pr+ +(ml )  

1 1 
"~ 16 [m~ 16~2m2 t-O([ml 3), 4=  1 

P+._ + 

161l, +1/21~ 16~21l,+1/212~-0 l '  + ~  , 

p+,+ Iml) 

12842 
(2~rn)4, 4 -~ 0 

( ' )  
164 

~ + 1 / 2 ) ]  4 - ,  0 

(4.12) 

4 = 1  (4.13) 

(4.14) 

(4.15) 

Before discussing the results (4.10) (4.15) in the context of the sum 
rule (4.9), I draw attention to some other features of the expansions. The 
leading-order coefficient as 4 ~ 1 in (4.10) and the coefficient in (4.14) are 
positive. Since p+,+r is decaying as m 4, this implies that their Fourier 
transform for small k is also positive. This must be the case as the Fourier 
transform of v p +. + can be written as the canonical average of a nonnegative 
quantity and is thus nonnegative. Similarly, the coefficient of 1/fm] in 
(4.12) must be positive. Another feature of (4.10) and (4.11) is that the 
coefficients of the (1 - 4) -k terms add to zero. This is consistent with the 
leading-order, small-4 behavior given by (4.t4) and (4.15). 

Now consider the sum rule (4.9) and suppose F =  2. From (2.17) and 
(2.18) we see 

C'~(m)/q 2 ~ - 2 r p  + (1 - rp + ) / ~  Jmr 2 (4.16) 

and so (4.9) is obeyed only at the density Tp+ = 1/2. However, there is no 
nonanalytic behavior associated with the insulator-conductor transition. 
From (1.1), (1.4), and Fourier transform theory u~ we see from (4.16) that 
at F = 2  

t / e ( k ) , , ~ l - 4 r p + ( l - r p + )  as k ---, 0 (4.17) 

In the quantum Brownian motion problem mentioned in the Introduc- 
tion, the mobility can be calculated exactly at the coupling corresponding 
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to F =  2, (11) and is also found to vary continuously with the dimensionless 
parameter. 

Next consider the F = 4  results (4.10)-(4.15). For ~ r  we see from 
(4.10) and (4.11) that the left-hand side of (4.9) decays as O(1/[rn[4), so the 
system is insulating. In the low-density ~ ~ 0 limit, from (4.14) and (4.15) 
we can deduce 

1 / e ( k ) ~ l - ( 3 2 / 3 ~ z ) ( ~ k  2) as k-- ,0 (4.18) 

On the other hand, from (4.12) and (4.13), if ~ = 1 (rp+ = 1/2), 

T 2 C 2 (m)/q ~ -1/4re 2 tml 2 (4.19) 

which from (4.9) says that the system is in a conducting state. Thus, the 
phase transition along the F = 4  isotherm is of an insulator-conductor 
type, in which the insulating phase has a dielectric constant equal to unity. 

5. D ISCUSSION 

5.1. Decay of the Correlat ions in the Low-Densi ty  Regime of 
the Insulating Phase 

The truncated two-particle distributions are functions of the scaled 
fugacity ~ and the particle separation. In the insulating regime we expect 
pr+,+ and pr+, to be analytic functions of 4. A feature of the exact results 
(2.10), (2.18), (4.14), and (4.15) is that the leading-order behavior as a 
function of ~ is O(~ 2) for r p+,+ and O(~) for pr+, . The former result is 
readily understood as a consequence of expanding both sides of the com- 
pressibility sum rule (4.1) in powers of 4- The first nonzero term of the 
right-hand side will be 0(42). According to the perfect screening sum rule 
(4.6), one can now conclude that for small ~, pr+, behaves as O(~). 

In the conducting regime the correlations are not expected to be 
analytic functions of ~ around ~ = 0. This would be a consequence of the 
zeros of the grand partition function, which are conjectured to be on 
the negative real axis throughout the region, pinching the origin in the 
thermodynamic limit. 

It was remarked in the Introduction that for the dielectric phase one 
expects in general 

d r ( k )  ~ o(Ikl) (5.1) 

which is the same as saying 

C( y ) ~ o(1/y 2) (5.2) 
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A B 

Fig. 1. A typical configuration required for the heuristic derivation of (5.3). The fixed 
charges are labeled A and B. The dots denote empty lattice sites available to the positive 
charges, while the crosses denote empty lattice sites available to the negative charges. 

In fact, analogous to the Kosterlitz-Thouless presumption (I2) for the 
two-dimensional generalization of this system, we might suppose that for 
low densities and the dielectric regime (F~> 2) 

pr+, ( y ) ~ e  rl~ (5.3) 

Indeed, the exact results (2.18) and (4.15) are in agreement with (5.3) (up 
to a numerical factor). 

Although there is thus some evidence in favor of the validity of (5.3), I 
believe there is a fundamental problem with the reasoning leading to its 
formulation. Recall the derivation of (5.3). Consider a positive and negative 
charge at some fixed distance y in the insulating regime at low density. 
Since by assumption the system is dielectric and behaving as a vacuum, the 
particles interact via their bare (dimensionless) potential - F l o g  r (see 
Fig. 1). Furthermore, since the system is assumed dilute (~ ~ 0 ) ,  one need 
only consider the first term (Boltzmann factor of the fixed charges) in the 
grand canonical ensemble expression for the distribution function. Thus the 
result (5.3). 

The problem with this argument is the neglect of the fact that the 
positive and negative charges are themselves part of the system. As such 
they will each be one member of a positive-negative charge combination 
(dipole), so the effective pair potential will not be - F l o g  r (see Fig. 2). 
Thus it seems that the statement (5.3) requires further study. 

5.2. Sca l ing  Proper t i es  

Of fundamental importance in the general theory of phase transitions 
is the behavior of the correlation length near the critical point. From (4.10) 
and (4.11) one sees that the length scale of the truncated distribution 
functions is 

m Jl - -  ~ 1 3 / 2  (5.4) 

�9 • 

Fig. 2. 

A B 

An actual typical configuration in the insulating regime. The charges A and B are 
each part of a dipole. 
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as ~ --* 1. However, the charge charge correlation exhibits a different length 
scale. From (4.10) and (4.11) we see 

C;(m) 1 ( 512 
q2 (27zm) 4 \(1 ---5) 4 

and thus the length scale is 

rn I1-~1 

1024 544 3__2) 
(1--~)3 ~- (1--~) ~ 1 ~' (5.5) 

(5.6) 

5.3. Phase Diagram 

The results of Section 4.3 regarding the nature of the phase at ~ = 2 
and 4 and the conjectures in I concerning the zeros of the grand partition 
function strongly suggest the phase diagram given in Fig. 3. The line F = 2 
is the boundary between the conducting and insulating phases, the charac- 
teristics of this isotherm having been discussed in Section 4.3. 

The phase diagram bears a striking resemblance to that of the one- 
component log-gas in a periodic potential in one dimension. With /~ 

P 

!~ii~:,i:8 i; 

Fig.3. Conjectured phase diagram in the ~-F plane. The shaded region is conducting, along 
with the entire line ~ = 1. 
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denoting the particle density, the phase diagram has been conjectured for 
an arbitrary background potential of period 1//t. (5) If the coupling of the 
particle at point y to the background has a Boltzmann factor of the form 

f(y)= ~ c,,e 2,~*''y (5.7) 
n ~ --oo 

then the system undergoes a conducting-insulating transition at F = 2  
independent of the particular f ( y )  ( F <  2 is the conducting regime, F~> 2 is 
the insulating regime). The averaged quantity 

S(y) -p  f//'dy' pr(y+ y ', y') (5.8) 

plays the role of Cr(y)/q 2, with a conducting phase being characterized by 
the leading-order nonoscillatory behavior 

1 
S ( y )  ~ rc 2/ .y 2 (5.9) 

This sum rule is conjectured to hold for all potentials (5.7) provided F <  2, 
just as the two-component system is conjectured to be conducting for all 
and F <  2. 

At F = 2  in the one-component system the leading-order non- 
oscillating behavior is given by 

1 - ( q / C o )  2 
S(y) 2(W) 2 (5.10) 

so that the system is conducting if c I = 0. However, there is no nonanalytic 
behavior associated with this transition. The behavior is analogous to that 
of the two-component system at F =  2 with ( 1 -  4) identified with q/c o. 

At F = 4 ,  the leading-order nonoscillatory behavior in the one- 
component system is given by 

~b/y 4, C1 z~ 0 
S ( y )  ~ ( _ t / ( 4 9 2 y 2 )  ' c I = 0 

(5.11) 

where b is a nonzero constant. The thermodynamic quantities exhibit a 
singularity as Cl --+ 0. The singular part of the dimensionless free energy flf 
behaves as 

]~fsing ~ I(CI/C0) 2 l og  ICl[ (5 .12)  
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and the singular part of the density p(y) behaves as 

Psing(Y) #f(Y) cos(2~#y) Cl log Ic~l (5.13) 
(Co) 2 

From Section 4.3 we know the two-component system has the behavior 
(5.11) again with 1 - ~ identified with c~/co. This also holds for the singular 
behavior (5.12) and (5.13), since from I in the two-component system 

~(P-Pc) (1 8 ~ ) : l o g  I 1 -  ~l, P ~ = I  (21~ 2 -  1) z (5.14) 

and 

1 1 
p+ - p c ~ r ( 1 - ~ ) l o g  11-41, Pc=2- ~ (5.15) 

The correspondence between cl/co and 1 - ~  cannot continue 
throughout the insulating regime. The conjectured phase diagram I5) of the 
one-component system has the region 1 8 > F > 8 ,  c1=0 as an insulator 
unless both cl and c2 vanish. In fact, for the values of F in the range 

2p 2 < F <  2(p + 1) 2 (5.16) 

(p an integer) a previous heuristic argument ~5) predicts a conducting phase 
only if 

cl, c2,..., Cp = 0 (5.17) 

Of course, our understanding of both systems would be enhanced if the 
correspondence, and its breakdown for F > 8 ,  could be adequately 
explained. 

A d d e n d u m .  M.L. Rosinberg has informed me that he has succeeded in 
generalizing Gaudin's (7) method to obtain a simplified derivation of (3.30) 
and (3.31). 

A C K N O W L E D G M E N T S  

The remarks of the referess have been included in the revised version 
of this work. 
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